

Tanta University Faculty of Pharmacy Depart. of Pharm. Chem. Final Exam **Total Points: 100**

December 27, 2013 Level 3 Credit Hour Students Medicinal Chemistry 1 Time: 120 min

Course Code: PC 509

This Exam Booklet contains 10 different pages

Part One (25 Points, 60 min)

Q # I:

(20 Points)

Discuss briefly the following, giving structures, examples, mode of action and equations whenever possible

1) Degradation of tetracyclines

2) Second generation cephalosporins

3) SAR of aminoglycosides

4) Classes of antimalarial drugs

5) Preparation of povidone iodine

Select the <u>one best answer</u> by encircling the appropriate letter (a-e) then fill the answer sheet for Part One

1) The IUPAC name of methylene blue is 3,7-Bis(diethylamino)phenothiazinium chloride

a) True

b) False

2) In nanomolar concentration imidazole antifungals act via

a) Damaging cell membrane with the loss of cellular constituents such as potassium and amino acids

- b) Inhibiting lanosterol 14α -demethylase
- c) Inhibition of squalene epoxidase
- d) None
- 3) Amphoteracin is
- a) Pentaenec) Heptaene

b) Hexaene

d) None

 CH_3

COOH

4) For the above structures, which is the active form of penicillins?

a) A

b) **B**

c) C e) None

d) All

CI O II C-NH S CH₃

(A)

CHa

COOH

5) The above A is, except

a) Broad-spectrum

b) Orally active

c) \(\beta\)-lactamase resistant

d) All

e) None

6) The above structure B is

a) Calvulanic acid

b) Sulbactam

c) Tazobactam

d) None

- 7) Which is **not** true concerning clindamycin?
- a) It belongs to macrolide antibiotics
- b) It is a sulfur-containing antibiotic
- c) It contains pyrrolidine ring
- d) It is 7-chloro-7-deoxy lincomycin
- e) None

- 8) The above structure is
- a) Tetracycline
- c) Doxycycline

- b) Oxytetracycline
- d) minocycline
- 9) In tetracyclines, a cis-A/B ring fusion with an α-hydroxyl group at C-12a is essential for activity
 b) False
- a) True
- 10) Relocation of the nitro group in chloramphenicol abolishes activity
- a) True

Answer Sheet for Part One

				d	e
	a	b	c	u	1
1					-
2				-	1
3					+
4					1
5					-
6				+	-
7				-	-
8					-
9					+
10					

Part Two (25 Points, 60 min)

 $\underline{\mathbf{Q} \# 1}$: 1: Answer the following MCQ questions from (1–12) by ticking the appropriate box in the following answer sheet. Choose only one best answer and do not use pencil. (6 Points, 14 min)

Answer sheet of part two

No	а	b	С	d	е	No	а	b	С	d	<u>e</u>
1						7					
2						8					
3						9					
4						10					
5						11					
6						12			İ		

2		8		l			
3		9					
4		10					
6		11					
<u> </u>	void CNS side ef		rug should h	ave log	P val	ue	
a) higher than		b) 2		lower tl			
d) close to 2		e) none of	the above				
2. The parabol	ic relationship b	etween bio	logical activ	ity and	parta	tion	
coeffecient con	uld be represent	ed by the fo	ollowing equ	ation:	log	(1/C) =	=
$K_1 log P + K_2$							
a) true	b) false						
3. The physico	chemical paran	eter that re	present the	steric e	ffects	is	
a) Es	b) I	c) P	d) σ		e) n	one of	the
above							
4. Above log P	ovalue in the p	arabolic re	lationship be	etween	biolo	gical a	ctivity
and partation c	oeffecient, the	biological	activity of t	hat dru	g wil	1	
a) increase		b) decrea	ase		c)	none o	of the
above							
5. If log P of be	enzene = 2.13 ,	and log P	of phenol =	1.46, tł	ne lipe	ophilic	ity
constant of hyd	roxyl group wi	ll be equa	to				
a) 0.67	b) -0.67	1	c) 3.59			(d) -3.59
e) none of the a	bove						

6. The presence of hydroxyl gr	oup increase the concentra	tion of phenol than			
benzene in the					
a) aqueous phase b) organi	ic phase c) none of	f the above			
7. The model compounds used by Hammet to demonstrate (σ) value were					
a) substituted acetic acid		ostituted phthalic acid			
c) substituted benzoic acid) none of the above			
8. a positive value of σ_x indicat	es that the substituent is				
a) electron-donor	b) elect	ro-withdrawing			
9. negative π value of a substitution	tuent indicate that the subs	stituent has			
lipophilicity than h	ydrogen.				
a) lower	b)highe				
10. X-axis of Craig plot represe	ent				
a) P value	b) MR value	c) o value			
d) π value	e) none of the above				
11. Y-axis of Craig plot represe	ent				
a) P value	b) MR value	c) o value			
d) π value	e) none of the above				
12. According to topliss decision	on tree, if the 4-chloro an	alogue was less active			
than the original lead, the next	analogue to be synthesiz	ed should be			
a) 4-methoxy analogue	b) 4-methyl analogue	c) 3-chloro			
analogue					
d) 3,4-dichloro analogue	e) none of the above				

- $\underline{Q # 2:}$ 1) Starting from the following compound how could you synthesize 2-sulfanilamido-
- 4,6-dimethylpyrimidine?: (3 Points, 8 min)

$$H_2N$$
 SO_2NH_2

2) Complete the following synthesis to prepare norfloxacin? (3 Points, 8 min)

<u>Q#3:</u> Complete the following table as indicated in each case only in the provided space? (13 Pointsa, 30 min)

Chemical structure	Generic Name	Mechanism of action and Uses
	piritrexim	Mech. action:
(1)		Uses:
O CO₂H		Mech. action:
H ₂ N — N N N F		Uses:
(2)		Mech. Action:
	Lamivudine	Uses:
(3)		
	Efavirenz	Mech. Action: Uses:
(4)		

CH ₂ CH ₂ CI		Mech. Action: alkylating agent
CH ₂ CH ₂ CI		Uses:
(5)		
		Mech. action:
	Floxuridine	Uses:
(6)		
		Mech. action:
	dextrazoxane	Uses:
(7)		